Transition Metal Chemistry of Main Group Hydrazides. 16. (Phosphany1)hydrazines RzPN(Me)N(Me)PRz as a Novel Class of Chelating Bis(ph0sphines). Synthesis, Coordination Chemistry, and X-ray Structures of cis -[PdCl₂{ $(p$ -BrC₆H₄O)₂PN- $(\mathbf{Me})\mathbf{N}(\mathbf{Me})\mathbf{P}(\mathbf{OC}_6\mathbf{H}_4\mathbf{Br}_7p)_2$ and *cis* $\mathbf{W(CO)_4}\{(\mathbf{PhO})_2\mathbf{PN}(\mathbf{Me})\mathbf{N}(\mathbf{Me})\mathbf{P}(\mathbf{OPh})_2\}$

V. Sreenivasa Reddy,[†] Kattesh V. Katti,*^{,†} and Charles L. Barnes[‡]

Center for Radiological Research and MU Research Reactor, Allton Building Laboratories, 301 Business Loop 70 West, Columbia, Missouri 65203, and Department of Chemistry, University of Missouri, Columbia, Missouri 6521 1

Received March 2, 1995@

The alkoxy- and aryloxy-functionalized **bis(phosphany1)hydrazines** of the type (OR)zPN(Me)N(Me)P(OR)2 were obtained from the reactions of the corresponding alcohols and phenols with $Cl_2PN(Me)N(Me)PCl_2$ in the presence of Et₃N. Interaction of these ligands with group 6 metal carbonyl precursors M(CO)₄(NHC₅H₁₀)₂ (M = Mo, W) gave the tetracarbonyl complexes of the type **cis-[M(CO)4(OR)2PN(Me)N(Me)P(OR)2}].** The reactions of the alkoxy and aryloxy-functionalized **bis(phosphany1)hydrazines** with Pd(PhCN)2C12 or with Pt(COD)C12 resulted in the formation of the complexes of the type cis -[MCl₂(OR)₂PN(Me)N(Me)P(OR)₂}]. The ligands are bound *cis* to the metal center(s) in all the complexes. The structures of all the complexes have been established by combination of spectroscopic and elemental analysis. **As** representative examples, we have determined the structures of *cis-* [W(C0)4{ (OPh)2PN(Me)N(Me)P(OPh)2}] **(15)** and *cis-* [PdCl2{ (OCsI&Br-p)2PN(Me)N(Me)P(OC.&Bf p ₂}] **(19)** by X-ray crystallography. X-ray data for 15: monoclinic, P_{21}/n , $a = 13.419(5)$ Å, $b = 19.588(3)$ Å, $c = 12.253(3)$ Å, $\beta = 103.65(2)$ °, $Z = 4$, and $R = 0.025$ $(R_w = 0.033)$. X-ray data for 19: triclinic, $P\bar{1}$, $a =$ 9.252(3) \AA , $b = 9.882(3) \AA$, $c = 17.739(5) \AA$, $\alpha = 83.84(2)^\circ$, $\beta = 83.98(2)^\circ$, $\gamma = 84.45(2)^\circ$, $Z = 2$, and $R =$ 0.064 $(R_w = 0.076)$.

Introduction

The discovery of new chelating bis(phosphines) continues to attract considerable attention because of their role in the development of catalytically useful transition metal complexes.¹⁻⁵ Among the alkane-bridged bis(phosphines), $(e.g., R_2P(CH_2)_n)$ - $PR₂$) bis(di(alkyl or aryl)phosphino)ethane has found numerous applications in the design of monometallic-based transition metal compounds and catalysts.^{1,6} The appropriate bite angle provided by the ethane backbone has been implicated as the main reason for the prevalence of stable five-membered mononuclear chelates with demonstrated catalytic properties.^{1,6} The development of new bis(phosphines) that possess similar spacing between the P^{III} centers, as in $R_2P(CH_2)_2PR_2$, may present the potential to expand the scope of the transition metal chemistry of chelating bis(phosphines). In this connection, the ethylene-bridged bis-(phosphine) $R_2PCH=CHPR_2$ has provided an interesting example of a ligand with a similar chain length as that of diphos. We have reasoned that the development of bis(phosphines) with main group centers $(e.g.$ nitrogen) connecting the P^{III} centers may offer new opportunities in tuning the electronic and steric

- Department of Chemistry, University of Missouri.
- @ Abstract published in *Advance ACS Abstracts,* October 1. 1995.
- (1) (a) Moloy, K. G.; Wegman, R. W. *In Homogeneous Transition Metal* Catalyzed reactions: Moser, W. R., Slocum, D. W., Eds.; American Chemical Society: Washington DC, 1992; p 323. (b) Laneman, S. A.; Stanley, G. G. *Ibid,* p 349. (c) van Leeuwen, P. W. N. M.; Robeek, C. F. *Ibid,* p 368.
- Parshall, G. W. *Homogeneous Catalysis;* Wiley: New **York,** 1980. Pignolet, L. H. Ed. *Homogeneous Catalysis with Metal Phosphine Complexes;* Plenum: New **York,** 1983.
- Alper, H.; Maldonado, M. **S.;** Lin, I. J. B. *J. Mol. Catal.* **1988,** *49,* L27.
- Pisano, C.; Mezzett, A,; Consiglio, G. *Organometallics* **1992,** *11,* 20.
- Moloy, K. G.; Wegman, R. W. *J. Chem. Soc., Chem. Commun.* **1988,** (6) 820.

characteristics of the interacting phosphines. Towards this objective the discovery of a novel synthetic strategy to bis- **(dichlorophosphino)dimethylhydrazine** (C12PN(Me)N(Me)PC12) was recently reported.^{7,8} This dinitrogen-bridged bis(phosphine), **1,** is a useful synthon, because (a) it has a similar chain length as that of diphos suggesting its utility in the formation of mononuclear five-membered chelates 9 and (b) the reactive chlorides may be used in the development of a wide spectrum of $R_2PN(Me)NMe)PR_2$ -type of derivatives affording systematic tuning of nucleophilicity and π -acidity of the P^{III} centers.^{9,10} It may also be noted that the development of fundamental coordination chemistry of hydrazine-bridged bis(phosphines) **(A)** may aid in furthering the chemistry of the higher homologue of bis(phosphin0)amines **(B)."** In this paper we report the

synthesis and characterization of a series of bis(phosphany1) hydrazines $(R_2PN(Me)N(Me)PR_2)$. The coordination chemistry of these new phosphanyl hydrazines with $Mo(0)$, $W(0)$, $Pd(II)$ and Pt(I1) precursors **is** also described through the X-ray structural analysis of the representative examples.

- (8) Reddy, V. S.; Katti, **K.** V. *Inorg. Chem.* **1994,** *33,* 2695.
- (9) Reddy, V. S.; Katti, K. V.; Barnes, C. L. *Chem. Ber.* **1994,127,** 1355.
- (10) Katti, K. V.; Reddy, V. S.; Singh, P. **R.** *Chem.* SOC. *Rev.* **1995,** 97.
- (1 1) For recent reviews on the coordination chemistry of phosphinoamines see: (a) Balakrishna, M. S.; Reddy, V. S.; Krishnamurthy, S. S.; Laurent, J. C. T. R. B.; Nixon, J. F. *Coord. Chem. Rev.* **1994, 129,** 1. (b) King, R. B. *Acc. Chem. Rev.* **1980,** *IS,* 243.

^{&#}x27; Center for Radiological Research and MU Research Reactor.

⁽⁷⁾ Reddy, V. S.; Katti, K. V. *Inorg. Synth.,* submitted for publication.

Experimental Section

All reactions were carried out under purified nitrogen by standard Schlenk techniques. Solvents were purified and dried by standard methods and distilled under nitrogen prior to use. Reagents such as dimethylhydrazine dihydrochloride, PCl₃, MeOH, EtOH, CF₃CH₂OH, CH₂=CHCH₂OH, CH₃(CH₂)7OH, *i*-PrOH, *p*-BrC₆H₄OH, [Mo(CO)₄- $(NHC₅H₁₀)₂$], PdCl₂(PhCN)₂, and PtCl₂(COD) were purchased from Aldrich Chemical Co. and were used without further purification. $[W(CO)₄(NHC₅H₁₀)₂]$ was prepared by literature methods.¹² The compound $[Cl_2PN(Me)N(Me)PCl_2]$ (1) was prepared by refluxing 1,2dimethylhydrazine dihydrochloride in large excess PCl₃.⁸ Triethylamine was distilled over KOH and stored over molecular sieves under N₂.

Nuclear magnetic resonance spectra were recorded on Bruker **AMX-**500 and ARX-300 spectrometers using CDCl₃ solvent. The ¹H NMR chemical shifts are reported in ppm, downfield from external standard SiMe₄. The ³¹P NMR spectra were recorded with 85% H₃PO₄ as an external standard, and positive chemical shifts lie downfield of the standard. Infrared spectra were recorded using Nujol mulls and KBr cells on a Mattson Galaxy 3000 spectrophotometer. Elemental analyses were performed by Onida Research Services, Inc. New York.

General Procedure for $(RO)_2PN(Me)N(Me)P(OR)_2$ (2-8). A mixture of corresponding alcohol (82.0 mmol) and $Et₃N$ (84.0 mmol) in *n*-hexane (50 mL) was added dropwise to 1 (20.5 mmol) also in hexane (200 mL) at 25 °C. The reaction mixture was stirred for 2 h, and the Et₃N*HCl was filtered off. Removal of the solvent in vacuo gave the analytically pure title compound(s) in $75-90\%$ yield as a viscous liquid(s).

R = Me (2). Yield: 76% (3.7 g). Anal. Calcd for $C_6H_{18}N_2O_4P_2$: C, 29.51: H. 7.43; N, 11.47. Found: C, 29.72; H, 7.61: N, 11.19. 'H Hz, 12H, OMe), ³¹P NMR: δ 148.5 (s). NMR: δ 2.78 (t, ³J_{PH} + ⁴J_{PH} = 1.7 Hz, 6H, NCH₃), 3.50 (t, J_{PH} = 6.8

R = **Et** (3). Yield 78% (4.7 g). Anal. Calcd for $C_{10}H_{26}N_2O_4P_2$: C, 40.00: H, 8.73: N, 9.33. Found: C, 40.12; H, 8.57; N, 9.42. 'H Hz, 12H, CH₃), 3.90 (m, br, 8H, OCH₂). ³¹P NMR: δ 139.9 (s). NMR: δ 2.98 (t, ³J_{PH} + ⁴J_{PH} = 1.7 Hz, 6H, NCH₃), 1.27 (t, J_{PH} = 7.0

 $R = CH_2CF_3$ (4). Yield: 86% (8.9 g). Anal. Calcd for $C_{10}H_{14}F_{12}N_2O_4P_2$: C, 23.27; H, 2.73; N, 5.43. Found: C, 23.28; H, 4.10 (m, br, 8H, OCH2). 31P NMR: 6 147.3 (s). 2.68; N, 5.36. ¹H NMR: δ 2.85 (t, ³J_{PH} + ⁴J_{PH} = 2.4 Hz, 6H, NCH₃),

 $R = CH₂CH=CH₂ (5)$. Yield: 82% (5.7 g). Anal. Calcd for C14H26N204P2: C, 48.26: H, 7.53; N, 8.04. Found: C, 47.72; H, 7.62: (m, 8H, OCH₂), 5.25 (m, 8H, CH=CH₂), 5.93 (m, 4H, CH=CH₂). ³¹P NMR: *6* 142.3 (s). N, 8.41. ¹H NMR: δ 2.93 (t, ${}^{3}J_{\text{PH}} + {}^{4}J_{\text{PH}} = 1.7$ Hz, 6H, NCH₃), 4.35

 $R = (CH₂)₇CH₃$ (6). Yield: 74% (9.4 g). Anal. Calcd for $C_{34}H_{74}N_2O_4P_2$: C, 64.12; H, 11.71; N, 4.40. Found: C, 63.85; H, 11.43; N, 4.59. ¹H NMR: δ 0.81 (t, ³J_{HH} = 13.4 Hz, 12H, CH₂CH₃), 1.20 (m, br, 40H, $(CH_2)_5CH_3$), 1.53 (m, br, 8H, OCH₂CH₂), 2.68 (t, ³J_{PH} + $^{4}J_{PH}$ = 1.7 Hz, 6H, NCH₃), 3.62 (m, 8H, OCH₂). ³¹P NMR: δ 143.1 **(S).**

 $R = CH(CH₃)₂$ (7). Yield: 80% (5.7 g). Anal. Calcd for $C_{14}H_{36}N_2O_4P_2$: C, 46.92; H, 10.13; N, 7.82. Found: C, 46.63; H, 10.19; N, 7.57. ¹H NMR: δ 1.25 (t, ${}^{3}J_{HH} + {}^{4}J_{PH} = 6.8$ Hz, 12H, CH(CH₃)₂), 2.72 (t, ${}^{3}J_{\text{PH}} + {}^{4}J_{\text{PH}} = 1.0$ Hz, 6H, NCH₃), 4.22 (m, br, 4H, OCH). ³¹P NMR: δ 143.0 (s).

 $R = C_6H_4Br-p$ (8). Yield: 87% (14.0 g). Anal. Calcd for C26H22Br4N204P2: C, 38.65; H, 2.74; N, 3.47. Found: C, 38.57; H, 6.8-7.5 (m, 16H, C_6H_4). ³¹P NMR: δ 138.0 (s). 2.81; N, 3.41. ¹H NMR: δ 2.92 (t, ³J_{PH} + ⁴J_{PH} = 2.50 Hz, 6H, NCH₃),

The aryloxy derivatives of 1 (R = OPh, 9 and R = $OC_6H_4CH_2$ - $CH=CH₂$, 10) were prepared according to previously published procedures.⁹

Ph₂PN(Me)N(Me)Ph₂ (11). To a solution of 1 (5.0 g, 19.08 mmol) in THF (50 mL) was added dropwise a solution of PhMgCl (78.0 mmol) also in THF (150 mL) at 0° C with constant stirring. Stirring was continued for further 4 h while allowing the reaction mixture to warm to room temperature. The magnesium chloride was filtered off, the solution was concentrated to ~ 50 mL in vacuo, and ~ 50 mL of n-hexane was added. The resulting solution was cooled at 0° C for 8

h, to afford the white crystalline powder of 11 in 85% (8.2 g) yield. Anal. Calcd for $C_{26}H_{26}N_2P_2$: C, 72.89; H, 6.12; N, 6.54. Found: C, 6H, NCH₃), 7.3 (m, 20H, Ph). ³¹P NMR: δ 62.5 (s). 72.46; H, 5.98; N, 6.64. ¹H NMR: δ 2.70 (t, ³J_{PH} + ⁴J_{PH} = 1.10 Hz,

 cis -[Mo(CO)₄{(OR)₂PN(Me)N(Me)P(OR)₂}] (R = CH₂CF₃ (12), **Ph** (13)). To a solution of cis-[Mo(CO)₄(NHC₅H₁₀)₂] (0.529 mmol) in dichloromethane (25 mL) was added dropwise at 25 \degree C a solution of the corresponding ligand (4 or **9)** (0.540 mmol) also in dichloromethane (25 mL). The reaction mixture was heated under reflux for 2 h before the solvent was removed in *vacuo* to obtain a yellow microcrystalline powder. This residue was extracted from a mixture of CH₂Cl₂/hexane (1:1 ratio), and the extracts (3 \times 10 mL) were filtered through a column of silica gel (20 g). Evaporation of the solvent *in vacuo* gave the title compound(s) 12 and 13 as an yellow crystalline $solid(s)$.

 $R = CH_2CF_3$, (12). Yield 78% (0.30 g). Anal. Calcd for $C_{14}H_{14}F_{12}N_2O_8P_2Mo$: C, 23.22; H, 1.95; N, 3.87. Found: C, 23.20; H, 1.89; N, 3.92. IR (Nujol) *(Y* (CO)): 2057 (sh), 1972 (s), 1951 (s), NCH₃), 4.20 (m, 8H, OCH₂). ³¹P NMR: δ 194.0 (s). and 1912 (vs) cm⁻¹. ¹H NMR: δ 2.83 (t, ${}^{3}J_{PH} + {}^{4}J_{PH} = 2.4$ Hz, 6H,

 $R = Ph (13)$. Yield 80% (0.30 g). Anal. Calcd for C₃₀H₂₆N₂O₈P₂-Mo: C, 51.44: H, 3.74: N, 4.00. Found: C, 51.42; H, 3.79: N, 4.05. IR (Nujol) *(v* (CO)): 2037 **(s),** 1952 **(s),** 1935 **(s),** and 1921 (vs) cm-'. ¹H NMR: δ 3.00 (t, ³J_{PH} \bullet ⁴J_{PH} = 3.8 Hz, 6H, NCH₃), 7.0-7.45 (m, 20H, OPh). 3'P NMR: 6 172.6 (s).

 cis -[W(CO)₄{(OR)₂PN(Me)N(Me)P(OR)₂}] (R = CH₂CF₃ (14), **Ph** (15)). To a solution of cis-[W(CO)₄(NHC₅H₁₀)₂] (1.00 mmol) in dichloromethane (25 mL) was added dropwise at 25 "C a solution of the corresponding ligand (4 or 9) (1.00 mmol) also in dichloromethane (25 mL). The reaction mixture was heated under reflux for 6 h and worked up as described above for 12 and 13 to obtain the title compound(s) as yellow microcrystalline powders.

 $R = CH₂CF₃$ (14). Yield: 76% (0.64 g). Anal. Calcd for $C_{14}H_{14}F_{12}N_2O_8P_2W$: C, 20.71; H, 1.74; N, 3.45. Found: C, 21.04; H, 1.86: N, 3.39. IR (Nujol) *(v* (CO)): 2052 (sh), 1965 (s), 1994 (s), and 1904 (vs) cm⁻¹. ¹H NMR: δ 2.82 (t, ³J_{PH} + ⁴J_{PH} = 3.8 Hz, 6H, NCH₃), 4.40 (m, 8H, OCH₂). ³¹P NMR: δ 173.9 (s, ¹J_{WP} = 366 Hz).

 $R = Ph$ (15). Yield 82% (0.65 g). Anal. Calcd for $C_{30}H_{26}N_2O_8P_2W$: C, 45.71; H, 3.32; N, 3.55. Found: C, 45.74; H, 3.36; N. 3.51. IR (Nujol) *(Y* (CO)): 2033 (sh). 1944 (s), 1927 **(s),** and 1914 (vs) cm⁻¹. ¹H NMR: δ 2.98 (t, ³J_{PH} + ⁴J_{PH} = 4.0 Hz, 6H, NCH₃), 7.1-7.5 (m, 20H, OPh). "P NMR: *6* 169.3 (s, 'Jwp = 373 Hz).

General Procedure for Palladium Complexes cis -[PdCl₂{ $(OR)_{2}$ - $PN(Me)N(Me)P(OR)₂$] ($R = CH₂CF₃(16)$, *i*-Pr (17), Ph (18), C₆H₄- $Br-p$, (19), $C_6H_4(2-CH_2CH=CH_2)$ (20)). A dichloromethane solution of the corresponding ligand (0.800 mmol) was added dropwise to a solution of $PdCl₂(PhCN)₂$ (0.785 mmol) also in dichloromethane (25 mL) at 25 °C. The reaction mixture was stirred for 0.5 h before the solvent was removed in *vacuo* to obtain yellow microcrystalline powder. This was washed with hexane to remove the benzonitrile and dried *in vacuo* to obtain the title complex(s) in $90-95\%$ yield.^{*}

 $R = CH₂CF₃$ (16). Yield: 91% (0.50 g). Anal. Calcd for $C_{10}H_{14}Cl_2F_{12}N_2O_4P_2Pd$: C, 17.32; H, 2.03; N, 4.04. Found: C, 17.42; NCH,), 4.42 (m, br, 8H, OCH2). "P NMR: 6 126.4 **(s).** H, 2.16; N, 3.91. ¹H NMR: δ 2.94 (t, ${}^{3}J_{\text{PH}} + {}^{4}J_{\text{PH}} = 5.2$ Hz, 6H,

 $R = CH(CH_3)_2$ (17). Yield: 94% (0.60 g). Anal. Calcd for $C_{14}H_{36}Cl_2N_2O_4P_2Pd$: C, 31.39; H, 6.77; N, 5.23. Found: C, 31.48; H, 6.85; N, 5.02. ¹H NMR: δ 1.40 (dd, ³J_{HH} = 5.9 Hz, ⁴J_{PH} = 4.4 Hz, 12H, CH(CH₃)₂), 2.76 (t, ³J_{PH} + ⁴J_{PH} = 5.2 Hz, 6H, NCH₃), 5.40 (m, br, 4H, CH(CH₃)₂). ³¹P NMR: δ 120.7 (s).

 $R = C_6H_5$ (18). Yield: 87% (0.67 g). Anal. Calcd for $C_{26}H_{22}Br_4Cl_2N_2O_4P_2Pd: C, 31.69; H, 2.25; N, 2.84. Found: C, 31.72;$ H, 2.21; N, 2.67. ^IH NMR: δ 2.92 (t, ³J_{PH} + ⁴J_{PH} = 5.0 Hz, 6H, NCHj), 7.0-7.5 (m, 16H, C6H4). "P NMR: *6* 118.4 **(s).**

 $R = C_6H_4(2-CH_2CH=CH_2)$ (20). Yield: 90% (0.60 g). Anal. Calcd for $C_{38}H_{42}Cl_2N_2O_4P_2Pd$: C, 54.99; H, 5.10; N, 3.37. Found: NCH₃), 3.45 *(ABX pattern, ²J_{HAHB}* = 15.9 Hz, ³*J_{HAHX}* = 6.3 Hz, 8H, Hz, ${}^{2}J_{HAHM} = 0.8$ Hz, 8H, CH=CH₂), 5.90 (m, 4H, CH₂CH=CH₂), 7.07-7.30 (m, 16H, C_6H_4). ³¹P NMR: δ 104.1 (s). C, 55.27; H, 5.23; N, 3.19. ¹H NMR: δ 2.90 (t, ³ J_{PH} + ⁴ J_{PH} = 4.8 Hz, $C_6H_4CH_2CH$), 5.0 *(AMX pattern, ³J_{HXHM}* = 16.5 Hz, ³*J_{HXHA}* = 10.1

⁽¹²⁾ Darensbourg. D. L.: Kump, R. L. *Inorg. Chem.* 1978, *17,* 2680

Table **1.** Crystal Data for Complexes **15** and **19**

	15	19	in differe
formula	$C_{30}H_{26}N_2O_8F_{12}P_2W$	$C_{26}H_{16}N_2O_4P_2Cl_2Br_4Pd$	paramete agreemer
crystal system	monoclinic	triclinic	used for
space group	$P2_1/n$	$P\bar{1}$	
fw	788.33	979.28	
a, Å	13.419(5)	9.252(3)	Results
b, Å	19.588(3)	9.882(3)	Synth
c. Å	12.253(3)	17.739(5)	
α , deg	90.0	83.74(2)	aryloxy
β , deg	103.65(2)	83.98(2)	$(RO)2$ Pr
$\gamma,$ deg	90.0	84.45(2)	CH ₂ CH ²
Z	4	2	were ob
F(000)	1552	934	
V, \mathring{A}^3	3129.8(2)	1597.3(8)	or phen
d_{calc} , g/cm ³	1.673	2.036	$Et3N$ in
cryst size, mm	$0.20 \times 0.35 \times 0.40$	$0.05 \times 0.15 \times 0.25$	$Ph_2PN($
μ , mm ⁻¹	3.92	5.83	
no. of unique rflns	4332	3909	a Grign
no. of reflns with $I \geq 2\sigma(I)$	3669	2352	yield. A
no. of variables	388	240	are air-s
$R; R\downarrow^a$	0.025; 0.033	0.064; 0.076	derivati
GOF	1.08	2.01	
max shift/ σ	0.002	0.006	hygrosc
res. electron density, e/A^3	0.39	1.51	of the p

 $a R = \sum (|F_{o}| - |F_{c}|)/\sum (|F_{o}|), R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2}/\sum w/(|F_{o}|)^{2}]^{1/2}.$

General Procedure for Platinum Complexes: cis-[PtCl₂{(RO)₂- $PN(Me)N(Me)P(OR)₂$] **(R = CH₂CF₃ (21),** *i***-Pr (22), (CH**₂)₇CH₃ (23), C₆H₄Br- p (24)). A dichloromethane solution of the corresponding ligand (0.830 mmol) was added dropwise to a solution of $PrCl₂(COD)$ (0.806 mmol) also in dichloromethane (25 mL) at 25 °C. The reaction mixture was stirred for 2 h, and the solvent was removed in *vacuo* to obtain white microcrystalline powder(s). This was washed from n-hexane to remove the cyclooctadiene and dried in *vacuo* to obtain the title complex(s) in $90-95\%$ yield.

 $R = CH_2CF_3$ (21). Yield: 91% (0.57 g). Anal. Calcd for CloH14C12FI2N2O4P2Pt: C, 15.36; H, 1.80; **N,** 3.58. Found: C, 15.43; 6H, NCH₃), 4.80 (m, br, 8H, OCH₂). ³¹P NMR: δ 103.6 (s, ¹J_{PtP} = 5362 Hz). H, 1.92; N, 3.47. ¹H NMR: δ 2.92 (dd, ³J_{PH} = 7.6 Hz, ⁴J_{PH} = 2.0 Hz,

 $R = CH(CH₃)₂$ (22). Yield: 96% (0.48 g). Anal. Calcd for $C_{14}H_{36}Cl_2N_2O_4P_2Pt$: C, 26.93; H, 5.81; N, 4.49. Found: C, 27.21; H, 5.99; N, 4.37. ¹H NMR: δ 1.40 (dd, ${}^{3}J_{\text{HH}} = 7.6$ Hz, ${}^{4}J_{\text{PH}} = 2.0$ Hz, 12H, CH(CH₃)₂), 2.76 (t, ³J_{PH} + ⁴J_{PH} = 2.9 Hz, 6H, NCH₃), 4.95 (m, 4H, CH(CH₃)₂). ³¹P NMR: δ 94.8 (s, ¹J_{PtP} = 5412 Hz).

 $R = (CH₂)₇CH₃$ (23). Yield: 94% (0.68 g). Anal. Calcd for C34H74C12N204P2Pt: C, 45.23; H, 8.26; N, 3.10. Found: C, 45.01; H, 1.27 (m, br, 40H, $(CH_2)_5CH_3$), 1.71 (m, br, 8H, OCH₂CH₂), 2.87 (t, 8.13; N, 2.98. ¹H NMR: δ 0.88 (t, ³J_{HH} = 13.2 Hz, 12H, CH₂CH₃), $3J_{PH} + 4J_{PH} = 4.8$ Hz, 6H, NCH₃), 4.40 (m, 8H, OCH₂). ³¹P NMR: δ 99.7 (s, ${}^{1}J_{\text{PtP}} = 5384 \text{ Hz}$).

 $R = C_6H_4Br-p$ (24). Yield: 97% (0.84 g). Anal. Calcd for $C_{26}H_{22}Br_4Cl_2N_2O_4P_2Pt$: C, 29.08; H, 2.06; N, 2.61. Found: C, 29.12; NCH₃), 7.1-7.4 (m, 16H, C₆H₄). ³¹P NMR: δ 95.4 (s, ¹J_{PtP} = 5408 Hz). H, 2.10; N, 2.78. ¹H NMR: δ 2.92 (t, ${}^{3}J_{PH}$ + ${}^{4}J_{PH}$ = 5.0 Hz, 6H,

X-ray Data Collection and Processing

The crystal data and details of data collection for **15** and **19** are listed in Table 1. Yellow crystals of **15** suitable for X-ray diffraction were obtained from CH_2Cl_2/h exane (1:3 v/v) at 0 °C, whereas suitable crystals of 19 were obtained by slow evaporation of its CDCl₃ solution. All X-ray data were collected on an Enraf-Nonius CAD-4 diffractometer with Mo K α radiation and a graphite monochromator at 22(1) °C. The cell dimensions were obtained from a least-squares fit to setting angles of 25 reflections with 2θ in the range $20.0-30.0^{\circ}$. Crystals of 15 and **19** exhibited no significant decay under X-ray irradiation.

The structures were solved by direct methods and were subsequently refined by the full-matrix least square method which minimizes $\sum w_i$ $(|F_0| - |F_c|)^2$ where $w^{-1} = [\sigma(\text{counting}) + (0.008(F_0)^2)/4F_0]$. Atomic scattering factors which included anomalous scattering contributions were from ref 13. All hydrogen atoms in both structures were located in difference Fourier maps and refined with fixed isotropic thermal parameters. The final cycle of the least-squares refinement gave an agreement factor *R* of 0.025 for **15** and 0.064 for **19.** The programs used for the crystallographic computations are reported in ref 14.

Results and Discussion

Synthesis of Bis(phosphany1)hydrazines. The alkoxy- and aryloxy-functionalized dinitrogen-bridged bis(phosphanes) $(RO)_{2}PN(Me)N(Me)P(OR)_{2}$ (R = Me (2), Et (3), CH₂CF₃ (4), $CH_2CH=CH_2 (5)$, $(CH_2)_7CH_3 (6)$, $CH(CH_3)_2 (7)$, $C_6H_4Me-p (8)$ were obtained from the reactions of the corresponding alcohols or phenols with Cl₂PN(Me)N(Me)PCl₂ (1) in the presence of Et₃N in $75-90\%$ yields (Scheme 1). The phenyl derivative, Ph₂PN(Me)N(Me)PPh₂ (11) was synthesized by the reaction of a Grignard reagent, PhMgC1, with **1,** in THF solution in 85% yield. All the alkoxide **(2-7)** and aryloxide **(8-10)** derivatives are air-stable, colorless, viscous liquids, whereas the phenyl derivative is a white crystalline powder and is somewhat hygroscopic. Previous studies have described the preparation of the phenyl derivative by the condensation reaction of *NN*dimethylhydrazine and PPh₂Cl at -196 °C.¹⁵ All the above ligands have been characterized by various spectroscopic and analytical methods. The 31P NMR spectra of all the compounds consisted of single resonance(s) in the range between $137-$ 148 ppm for alkoxide and aryloxides and at 62.5 ppm for the phenyl derivative **11** (Table 2). The 'H NMR data for **2-11** are consistent with the proposed structures. The 'H NMR spectra of all the compounds **(2-8)** show a triplet in the region $2.7-3.0$ ppm due to the NCH₃ protons with small coupling constants of $1.0 - 2.5$ Hz, with apparent "virtual coupling", for both the phosphorus nuclei.

Coordination Chemistry of Bis(phosphany1)hydrazines. Interaction of $M(CO)_{4}(NHC_{5}H_{10})_{2}$ (M = Mo and W) with diphosphane ligands **4** and **9** afford the mononuclear tetracarbonyl complexes of the type $cis-[M(CO)_4{(RO)_2PN(Me)N-}$ $(Me)P(OR)_2$ $(M = Mo, R = CH_2CF_3 (12), Ph (13); M = W,$ $R = CH_2CF_3$ (14), Ph (15) (Scheme 2). The ligands are bound cis to the metal center(s) in all the complexes $(12-15)$ as inferred by infrared spectroscopy. 3iP NMR chemical shifts of all the complexes **(12-15)** show single resonances (Table 2) and indicate the equivalence of both the phosphorus nuclei. The observation of a large downfield shift in the molybdenum complex is consistent with other Mo(0) complexes reported in the literature.^{11} The down-field shift in both the tungsten complexes, **14** (32.3 ppm) and **15** (26.6 ppm) is in contrast to the general trends observed for the tungsten complexes of diphosphinoamine and diphosphazane ligands^{11} for which the reasons are not clear. The large coupling constant values for 'JWP (366 Hz for **14** and 373 Hz for **15)** indicate the strong W-P interactions, as indicated in their short W-P bond distances observed in the structure of 15 (Table 3). ¹H NMR spectroscopic data for of all the complexes are consistent with the proposed structures for **12-15.** Observation of triplets for the NCH₃ protons, between 2.8 and 3.0 ppm with relatively

~ ~~~ ~ ~~

⁽¹³⁾ *International Tables For X-ray Crystallography*; Kynoch Press: Birmingham, England, 1974; Vol. 4.
The following references are relevant to the NRCVAX system: (a)

⁽¹⁴⁾ The following references are relevant to the NRCVAX system: (a) Gabe, E. J.; Page, *Y.* L.; Charland, J. L.: Lee, F. L.; White, P. S. *J. Appl. Clystallogr.* **1989.22,** 384. (b) Flack, L. *Acra Crystallogr., Sect. A* **1983,** 39, 876. (c) Johnson, C. K. *ORTEP-A Fortran Thermal Ellipsoid Plot Program;* Technical Report ORNL-5 138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976. (d) Larson, A. C. Crystallographic Computing; Munksgaard: Copenhagen, 1970, 293.
(e) Page, Y. L. J. Appl. Crystallogr. 1988, 21, 983. (f) Page, Y. L.;
Gabe, E. J. J. Appl. Crystallogr. 1979, 12, 464. (g) Rogers, D. Acta *Crq'stallogr., Sect. A* **1981,** *37,* 7.

⁽¹⁵⁾ Spangenberg, S. F.: Sisler, H. H. *Inorg. Chem.* **1969,** *8,* 1004.

Scheme 1

Scheme 2

Compound 15 W-P1 2.433(2) W-P2 2.409(2)
W-Cl 2.036(6) W-C2 2.019(6) $W-C1$ 2.036(6) $W-C2$ 2.019(6) $W-C3$ 2.052(2) $W-C4$ 2.007(6)
P1-N1 1.681(4) P2-N2 1.715(4) $1.681(4)$ N I -N2 1.440(6) c1-01 1.128(8) $1.125(7)$ $C4 - O4$ 1.143(8) $P1 - W - P2$ $P1 - W - C2$ P ¹ $-W$ -C₄ $P2-W-C2$ $P2-W-C4$ $C1-W-C3$ $C2-W-C3$ $C3-W-C4$ $W-C2-O2$ W-C4-04 $W - P2 - N2$ 75.9(6) $172.5(2)$ 93.4(2) 98.4(2) 169.0(2) 174.4(2) 89.2(2) 88.6(2) 176.8(5) 177.1(6) 110.8(1) $P1-W-C1$ $P1-W-C3$ $P2-W-C1$ $P2-W-C3$ $C1-W-C2$ $C1-W-C4$ $C2-W-C4$ $W-C1-O1$ $W-C3-O3$ $W-P1-N1$ $P1 - N1 - N2$ 90.0(2) $95.7(1)$ 90.2(9) 89.9(2) 85.2(2) 88.6(2) $92.5(2)$ 178.1(5) 17444) 109.2(2) 117.3(3)

Table 3. Selected Bond Lengths (A) and Angles (deg) for

105.2(3)

Figure 1. ORTEP drawing of 15 showing 50% probability ellipsoids.

in an envelope fashion. Selected bond distances and angles for **15** are summarized in Table 3. The complex shown in Figure 1 contains W(0) in a distorted octahedral geometry with the bisphosphane, **(PhO)zPN(Me)N(Me)P(OPh)2,** chelating in a *cis* fashion via the two phosphorus centers. The *cis* disposition of the carbonyl groups as indicated by the IR spectrum of **15** is seen in its structure. The metal carbonyl distances $W-C2$ (2.019(6) A) and W-C4 (2.007(6) **A)** are shorter compared to $W - C1$ (2.036(6) Å) and $W - C4$ (2.052(2) Å). In addition, the

P2-N2-N1

small coupling constants of $2.4 - 3.0$ Hz may be due to the virtual coupling with the two phosphorus centers. The X-ray structural analysis of **15** has been undertaken as a representative example. The ORTEP plot shown in Figure 1 confirms that the structure of **15** comprises the neutral monomeric five-membered chelate of W(0). The five-membered ring is nonplanar with $N(2)$ deviating from the plane of the W(0) metallacycle by 0.65 *8,*

 $C-O$ distances corresponding to the W-C2 (C2-O2 = 1.140(8) Å) and W-C4 (1.143(8) Å) groups are longer compared to the C-O distances of the W-C1 (C1-O1 = 1.128(8) Å) and W-C3 (C3-O3 = 1.125(7) Å) carbonyls. The carbonyl groups $C2 - O2$ and $C4 - O4$ are *trans* to the P1 and P2 phosphorus centers, respectively. The $C1-O1$ and $C3-O3$ groups are disposed trans to each other across the metal center. Interestingly, the geometry around both N1 (Σ N1 = 354.3) and N2 ($\Sigma N2 = 337.0$) is trigonal pyramidal. The longer P-N distances in 15, compared to the $Pd(II)$ analogue 19, $(P1-N1)$ $= 1.681(4)$ Å and $P2-N2 = 1.715(4)$ Å in 15) can be explained based on somewhat weaker nitrogen-phosphorus $p\pi$ -d π interaction (vide infra).

The interaction of alkoxy- and aryloxy-functionalized bis- (phosphanyl)hydrazines with $Pd(PhCN)_2Cl_2$ in dichloromethane resulted in the formation of cis- $[PdCl₂{(RO)₂}PN(Me)N(Me)P (OR)_{2}$ }] (R = CH₂CF₃ (16), *i*-Pr (17), Ph (18), C₆H₄Br-p (19) $C_6H_4(2-CH_2CH=CH_2)$ (20)) (Scheme 2). The corresponding reactions with $Pt(COD)Cl₂$ resulted in the formation of cis- $[PtCl₂{(RO)₂PN(Me)N(Me)P(OR)₂}]$ (R = CH₂CF₃ (21), *i*-Pr **(22),** (CH_2) **₇CH₃ (23)** C_6H_4Br-p **(24) (Scheme 2).** The structures of all the complexes have been established by combination of spectroscopic and elemental analysis. The ³¹P NMR spectra of all the palladium complexes **16-24** show single resonances owing to the presence of both phosphorus nuclei in similar chemical environments. The chemical shifts of all the Pd(I1) complexes $(16-20)$ appear in the range of $104-127$ ppm whereas those of Pt(I1) complexes **(21-24)** show resonances in the range $80-105$ ppm. The large $^{1}J_{\text{PtP}}$ coupling value $(\sim)5400$ Hz) is attributed to *cis* configuration around the platinum center and the value is very large compared to the values observed for other phosphine complexes reported in the literature.¹⁶ This clearly demonstrates the strong platinumphosphorus interactions as complemented by shorter Pt-P bond distances.6 The 'H NMR spectra for all the complexes is consistent with the proposed structures. The $NCH₃$ resonances for all the Pd(II) and Pt(II) complexes appear in the range $2.75-$ 2.95 ppm as triplets for the **Pt(II)** complex **21** in which it appears as a doublet of doublets. The coupling constants $({}^3J_{\text{PH}} + {}^4J_{\text{PH}})$ of all the Pd(II) and Pt(II) complexes are in the range of $4.8-$ 5.2 and $2.9 - 5.0$ Hz, respectively. In general, the P-H coupling values of both Pd(I1) and Pt(I1) complexes **(16-24)** are larger compared to $Mo(0)$ and $W(0)$ complexes $(12-15)$, which in turn are larger than the free-ligand values $(2-8)$.

The X-ray crystal structure analysis of a representative Pd(I1) complex **19** has been carried out. An ORTEP diagram of the structure **19** is shown in Figure 2 and the selected bond distances and angles are listed in Table 4. There are two neutral monomeric molecules in the unit cell with no unusual intermolecular contacts. The complex, shown in Figure 2, contains Pd in a typical square planar environment with the two phosphine units of the **bis(phosphany1)hydrazine** coordinated in a cis fashion. The geometry around both the nitrogen centers N1 and N2 in **19** is trigonal planar with the angles adding to \sim 360°. It is interesting to note that the P-N bonds in the palladium complex **19** are shorter compared to those in the tungsten complex **15** (Tables 3 and 4). On the basis of the electronic characteristics of CO (π -acid) and Cl (π -base), bonded to $W(0)$ and $Pd(II)$ in *trans* fashion respectively, one would expect shorter P-N bonds for the tungsten complex **15** as compared to the palladium complex **19.** The observed reversal in the P-N bond distances of **15** and **19** may be explained in

Figure 2. ORTEP drawing of **19** showing 50% probability ellipsoids.

Table 4. Selected Bond Lengths (A) and Angles (deg) for Compound **19**

$Pd-P1$	2.175(5)	$Pd-P2$	2.187(5)
Pd-C11	2.346(5)	$Pd - C12$	2.331(5)
$P1-N1$	1.649(17)	$P2-N2$	1.652(14)
$N1-N2$	1.389(22)	$N1 - C1$	1.44(3)
$N2-C2$	1.49(3)		
$C11-Pd-C12$	96.0(2)	$C11-Pd-P1$	175.7(2)
$C12-Pd-P2$	89.9(2)	$C12-Pd-P1$	88.3(2)
$C12-Pd-P2$	175.2(2)	$P1-Pd-P2$	85.8(2)
$Pd-P1-N1$	108.4(6)	$Pd-P2-N2$	107.5(5)
$P1 - N1 - N2$	117.3(12)	$P2 - N2 - N1$	118.3(11)

terms of the ring confirmations. The five-membered ring in **15** is effectively planar, suggesting efficient Pd-P interaction. Therefore, the shortening of the P-N bonds in **19** may be a consequence of the localization of electronic charge across the Pd-P-N segment of the near-planar ring. Our previous studies on the X-ray crystal structures of Pt(I1) complexes of similar **bis(phosphany1)hydrazines** also support such a bonding description for the $P-N$ bond distances.⁹ On the other hand, the fivemembered ring in $W(0)$ complex is nonplanar with $N(2)$ deviating from the five-membered plane by 0.65 A. The nonplanarity of the five-membered ring coupled with the trigonal pyramidal geometry around N2 ($\Sigma N2 = 337^{\circ}$; $\Sigma N1 = 354^{\circ}$) may lead to poor overlap of the appropriate π -orbitals of the nitrogen centers with the d-orbitals of phosphorus in **15.** This is reflected by longer P-N distances in **15** compared to those in **19.**

The Nature of N-N Bonds and the Oxidative Stability of (Phosphany1)hydrazines. The N-N bonds in the bis(phosphany1)hydrazines **2-10** are stable in common organic solvents including in boiling toluene. The $N-N$ bonds in these compounds may be considered as hybrid hydrazines because they are stable to atmospheric hydrolysis $(\sim 24$ h). It may be noted that the simple hydrazines (e.g. N-methylhydrazine or free hydrazine) tend to show marked thermal and hydrolytic instabilities. We have evaluated the oxidative stability of the trifluoroethoxy **(4)** and phenoxy **(9)** derivatives using 31P NMR spectroscopy. Upon exposure to the atmospheric moisture **4** and **9** showed less than 5% conversion to the corresponding phosphine oxides in 12 h. In fact, $\sim 10\%$ conversion to the corresponding phosphine oxides were noted when **4** and **9** were stored in solutions of ethanol-water $(1:1 \text{ v/v}, 12 \text{ h})$. In addition, examinations of the products from the reaction of bisphosphanyl hydrazides **2-10** with various transition metal precursors also indicated the absence of any species resulting from the cleavage of N-N bonds. These observations suggest kinetic and

^{(16) (}a) Nixon, J. F.; Pidcock, A. *Annu. Rev. NMR Spectrosc.* **1969,** *2,* 345 and references therein; (b) McCrindle, R.; McAlees, A. J. *Organometallics* **1993,** *12,* 2445.

thermodynamic inertness of N-N bonds in **2-10** toward reactions with the early and late transition metal precursors. The hydrolytic/thermal stability of N-N bonds and the oxidative stability of the P^{III} center(s), in bis(phosphany1)hydrazines present attractive potential in their utility as general purpose bis(phosphines) for use in coordination chemistry.

Acknowledgment. This work **was** supported by a DOE grant [DEFG0289E R60875] and by the Departments of Chemistry, Radiology and Research Reactor, University of Missouri. Partial funding of the X-ray diffractometer by the NSF, Grant No. CHE- [90-11804], is gratefully acknowledged.

Supporting Information Available: Tables of experimental details, bond distances and angles, H atom coordinates, and thermal parameters for 6 (11 pages). Ordering information is given on any current masthead page.

IC95023 1 K